The essential endoplasmic reticulum chaperone Rot1 is required for protein N- and O-glycosylation in yeast.
نویسندگان
چکیده
Rot1 is an essential yeast protein originally shown to be implicated in such diverse processes such as β-1,6-glucan synthesis, actin cytoskeleton dynamics or lysis of autophagic bodies. More recently also a role as a molecular chaperone has been discovered. Here, we report that Rot1 interacts in a synthetic manner with Ost3, one of the nine subunits of the oligosaccharyltransferase (OST) complex, the key enzyme of N-glycosylation. The deletion of OST3 in the rot1-1 mutant causes a temperature sensitive phenotype as well as sensitivity toward compounds interfering with cell wall biogenesis such as Calcofluor White, caffeine, Congo Red and hygromycin B, whereas the deletion of OST6, a functional homolog of OST3, has no effect. OST activity in vitro determined in membranes from rot1-1ost3Δ cells was found to be decreased to 45% compared with wild-type membranes, and model glycoproteins of N-glycosylation, like carboxypeptidase Y, Gas1 or dipeptidyl aminopeptidase B, displayed an underglycosylation pattern. By affinity chromatography, a physical interaction between Rot1 and Ost3 was demonstrated. Moreover, Rot1 was found to be involved also in the O-mannosylation process, as the glycosylation of distinct glycoproteins of this type were affected as well. Altogether, the data extend the role of Rot1 as a chaperone required to ensure proper glycosylation.
منابع مشابه
Saccharomyces cerevisiae Rot1 is an essential molecular chaperone in the endoplasmic reticulum.
Molecular chaperones prevent aggregation of denatured proteins in vitro and are thought to support folding of diverse proteins in vivo. Chaperones may have some selectivity for their substrate proteins, but knowledge of particular in vivo substrates is still poor. We here show that yeast Rot1, an essential, type-I ER membrane protein functions as a chaperone. Recombinant Rot1 exhibited antiaggr...
متن کاملRegulation of protein O-glycosylation by the endoplasmic reticulum–localized molecular chaperone Cosmc
Regulatory pathways for protein glycosylation are poorly understood, but expression of branchpoint enzymes is critical. A key branchpoint enzyme is the T-synthase, which directs synthesis of the common core 1 O-glycan structure (T-antigen), the precursor structure for most mucin-type O-glycans in a wide variety of glycoproteins. Formation of active T-synthase, which resides in the Golgi apparat...
متن کاملGlycoprotein Biosynthesis in a Eukaryote Lacking the Membrane Protein Rft1*
Mature dolichol-linked oligosaccharides (mDLOs) needed for eukaryotic protein N-glycosylation are synthesized by a multistep pathway in which the biosynthetic lipid intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) flips from the cytoplasmic to the luminal face of the endoplasmic reticulum. The endoplasmic reticulum membrane protein Rft1 is intimately involved in mDLO biosynthesis. Yeast genetic an...
متن کاملThe medial-Golgi Ion Pump Pmr1 Supplies the Yeast Secretory Pathway with Ca21 and Mn21 Required for Glycosylation, Sorting, and Endoplasmic Reticulum- Associated Protein Degradation
The yeast Ca21 adenosine triphosphatase Pmr1, located in medial-Golgi, has been implicated in intracellular transport of Ca21 and Mn21 ions. We show here that addition of Mn21 greatly alleviates defects of pmr1 mutants in N-linked and O-linked protein glycosylation. In contrast, accurate sorting of carboxypeptidase Y (CpY) to the vacuole requires a sufficient supply of intralumenal Ca21. Most r...
متن کاملIdentification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc.
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glycobiology
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2012